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Sporadic randomness: The transition from the stationary to the nonstationary condition
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We address the study of sporadic randomness by means of the Manneville map. We point out that the
Manneville map is the generator of fluctuations yielding the Le´vy processes, and that these processes are
currently regarded by some authors as statistical manifestations of a nonextensive form of thermodynamics.
For this reason we study the sensitivity to initial conditions with the help of a nonextensive form of the
Lyapunov coefficient. The purpose of this research is twofold. The former is to assess whether a finite diffusion
coefficient might emerge from the nonextensive approach. This property, at first sight, seems to be plausible in
the nonstationary case, where conventional Kolmogorov-Sinai analysis predicts a vanishing Lyapunov coeffi-
cient. The latter purpose is to confirm or reject conjectures about the nonextensive nature of Le´vy processes.
We find that the adoption of a nonextensive approach does not serve any predictive purpose: It does not even
signal a transition from a stationary to a nonstationary regime. These conclusions are reached by means of both
numerical and analytical calculations that shed light on why the Le´vy processes do not imply any need to
depart from the adoption of traditional complexity measures.
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I. INTRODUCTION

In recent few years there has been an increasing intere
the possibility of establishing a connection between therm
dynamics and dynamics through a generalization of the c
cept of sensitivity to initial conditions from exponential
power law@1–3#. The main idea behind these papers is th
according to the earlier work of Tsallis@4#, the conventional
Boltzmann-Gibbs-Shannon prescription

S52(
i

pi ln pi ~1!

has to be replaced by

Sq5

12(
i

pi
q

q21
. ~2!

The meaning of Eq.~1! is well known. The classica
phase space is divided into a discrete number of cells,
each cell is assigned a probabilitypi . The quantityS, ex-
pressed in terms of thepi ’s, according to Eq.~1!, is the
entropy of the dynamic system under study. The quantitySq
of Eq. ~2! is a nonextensive generalization of the conve
tional entropy of Eq.~1!. In fact, it is straigthforward to
prove thatSq of Eq. ~2! becomes identical toS of Eq. ~1!
when the parameterq, referred to as theentropic index, is
assigned the valueq51. It is believed that thepower law
sensitivity to initial conditions at the edge of chaos provid
a natural link between the entropic indexq and the nonex-
ponential sensitivity to initial conditions. To illustrate th
heuristic arguments of Refs.@1–3#, we can adopt the result
of a more recent paper@5#. In this paper we illustrate a gen
eralization of the Pesin theorem@6# on the basis of the non
extensive entropy of Eq.~2!. As is well known @7,8#, the
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Pesin theorem does not refer to the physical entropy, bu
the entropy of a single trajectory. The phase space is divi
into cells; each cell is assigned a label, and a single trajec
running on this phase space results in a sequence of sym
~the cell labels!. We then consider a window of sizeN, move
it along a symbolic sequence, and consider all possible c
binations ofN symbols corresponding to each window po
tion. This makes it possible to evaluate the correspond
probability, and, by means of the adoption of the conve
tional entropy of Eq.~1!, the entropyS(N) corresponding to
a window of sizeN. The Komogorov-Sinai~KS! entropyhKS
is defined@7,8# by

hKS5 lim
N→`

S~N!/N. ~3!

The Pesin theorem@6# establishes an attractive connectio
between the KS entropy and an important dynamic prope
called the Lyapunov coefficient. To illustrate the meaning
this theorem, let us consider, for simplicity, a on
dimensional map, defined in the interval@0,1# as

xn115F~xn!. ~4!

The Lyapunov coefficient reads

l~x0!5 lim
N→`

1

N
,L~N,x0!, ~5!

with

L~N,x0!5 (
n50

N21

lnuF8~xn!u5 ln ) F8~xn!. ~6!

The Pesin theorem states that if the invariant distribut
r(x) exists, the KS entropy reads
©2001 The American Physical Society10-1
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hKS5l5

E
0

1

lnuF8~x!ur~x!dx

E
0

1

r~x!dx

. ~7!

It is evident that this theorem is a natural consequence
adopting the form of Eq.~6! supplemented by the ergod
assumption.

In the case where the condition of strong chaos does
apply, the linear dependence ofS(N) on N, implied by Eq.
~3!, can be lost. Thus it seems to be convenient to genera
the KS approach by using the entropy of Eq.~2! rather than
that of Eq. ~1!. In this case we would replaceS(N) with
Sq(N). Let us focus our attention on the caseN@1, namely,
on windows of extremely large size, and let us denote
virtually continous time by the symbolt. In this case, accord
ing to the authors of Ref.@5#, for Sq(t) we obtain the follow-
ing expression:

Sq~ t ![
12dq21E dxr~x!qj~ t,x!12q

q21
. ~8!

The theory of Ref.@5# rests on the division of the phas
space into cells, so as to make possible an experimenta
termination of probability density; the symbold denotes the
cell size. The functionj„t,x(0)…, in fact, is defined, by the
prescription

j„t,x~0!…[ lim
Dx~0!→0

Dx~ t !

Dx~0!
, ~9!

whereDx(t) denotes the distance at timet between two tra-
jectories that at the initial timet50 are located at a distanc
Dx(0) from one another. The theoretical result of Eq.~8!
makes it easy for us to explain why the nonextensive ge
alization of the KS entropy can makeSq(t) increase linearly
in time, even if the ordinary exponential sensitivity to initi
condition is lost and is replaced by a power law sensitiv
To show this important property, let us consider the simp
fying condition wherej(t,x), with a power law form, is not
x dependent. In this case we have

j~ t !5@11~12Q!lQt#1/(12Q). ~10!

Under the simplifying conditions adopted, the coefficentlQ ,
is independent ofx. As shown hereby, the coefficentlQ
plays the role of generalized KS entropy. To see this pr
erty, let us replacej(t) in Eq. ~8!. Let us assign, to the
entropic indexq, the ‘‘magic’’ valueq5Q, corresponding to
the sensitivity to initial conditions of Eq.~10!. In this condi-
tion Sq(t) of Eq. ~8! becomes linearly dependent on time.
accordance with Eq.~3!, we must define the nonextensiv
form of the KS entropy as the limit fort→` of Sq(t)/t. The
limiting value in this case is given by the coefficentlQ . This
is the reason why the authors of Refs.@1–3# imaged a con-
02621
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nection between thermodynamics and dynamics more
tended than that based on an exponential sensitivity to in
conditions.

The main purpose of this paper is to assess whether or
this proposed generalization of the conventional approac
might afford some benefit in the case of intermittent p
cesses. First of all, we note that this attractive result is
tained by interpreting the window size as ‘‘time,’’ so as
establish a connection with the function of timej(t) of Eq.
~10!, that the authors of Refs.@1–3# considered to be the ke
ingredient to generalize the connection between dynam
and thermodynamics. To make our analysis of their conj
tures unambiguous, we adopt a safer point of view, acco
ing to whichN plays the same role as the volume of therm
dynamic formalism. Thus we rest on anad hoc
generalization of Eq.~6!. The rationale for this choice is a
follows. The expected generalized form of sensitivity of E
~10! suggests a definition of

J expq~x![@11~12q!x#1/(12q), ~11!

which implies a definition of theq logarithm:

lnq~x![
x12q21

12q
. ~12!

Thus the analog of Eq.~5! becomes:

lq~N,x0!5 lim
N→`

1

N
Lq~N,x0!, ~13!

with

Lq~N,x0![
1

12q F S )
n50

N21

uF8~xn!u D (12q)

21G . ~14!

This is the generalized form of the Lyapunov coefficient th
will be studied in this paper. For computational convenien
we shall also make an average over a distribution of ini
conditions.

The purpose of this paper is twofold. The first is to see
the Lyapunov coefficient of Eq.~14! can be finite in the
region where the ordinary KS entropy vanishes. The sec
is to decide whether or not the Le´vy processes can really b
interpreted as manifestations of the Tsallis nonextens
thermodynamics. With the help of the Manneville map illu
trated in Sec. II, we shall explain these two motivations m
clearly.

II. MANNEVILLE MAP

The case of sporadic randomness under study in this
per is the Manneville map@9#. This maps reads

xn115F~xn!5xn1xn
z~mod 1! ~z>1!. ~15!

For the sake of the reader’s convenience, we show this m
in Fig. 1. It is characterized by a laminar region given by t
interval @0,d#, with d defined by the equation.
0-2
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dz1d51. ~16!

This region is illustrated in Fig. 1 by the portion on the le
of the full vertical line. In this region the time evolution of
trajectory can be approximated by the continuous equati

ẋ5xz. ~17!

The region on the right of the vertical full line is th
chaotic portion of the map that, as we shall see in this pa
is the main source of the entropy increase. When the tra
tory enters the chaotic region, after a few steps it is rando
injected back into the laminar region. As we shall see in S
IV, an analytical treatment is possible if we make the
sumption that the chaotic region is confined at the poinx
51, so that the continuous approximation of Eq.~17! ex-
tends to the whole interval@0,1#. In this case the Pesin theo
rem leads us to

hKS5

E
0

1

dx
1

xz21
ln~11zxz21!

E
0

1

dx
1

xz21

. ~18!

At z51 this expression yields ln 2, in accordance with t
fact that the Manneville map becomes identical to the B
noulli map. At z52 the invariant distribution become
equivalent to ad of Dirac located atx50, thereby yielding
the vanishing value. It is therefore reasonable that a g
approximation to Eq.~18! is given by

hKS5z~22z!ln 2. ~19!

This is confirmed by Fig. 2, where we see that the appro
mated analytical expression of Eq.~19! fits the results of a
numerical evaluation of Eq.~18! very well. We also see tha
both predictions are close to the KS entropy of the Mann
ille map evaluated by Gaspard and Wang@10#, based on the

FIG. 1. The Manneville map. This is the form corresponding
z51.7. The vertical full line divides the laminar region, on the le
from the chaotic region, on the right. The abscissa of the divid
line, d, is determined by Eq.~16! and, in the case of this figure
turns out to bed'0.59.
02621
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use of Eq.~5!. This supports the adoption of the theory
Sec. IV, which is based on approximations yielding Eq.~18!.

We are now in a position to explain the first of the tw
issues that we aim to settle in this paper. We see from Fi
that the KS entropy vanishes in the regionz.2. The former
issue corresponds to the following question: Is it also p
sible to obtain a finite Lyapunov coefficient forz.2, if we
adopt the non-extensive perspective advocated by Tsalli

As far as the latter issue is concerned, for a proper ill
tration we must briefly review earlier work@11#. The Man-
neville map can be regarded as a dynamic generator of L´vy
processes. As explained in Refs.@11# and @12#, to derive a
process of diffusion from the Manneville map we can pr
ceed as follows. Let us consider the time at which the traj
tory is injected in the laminar region. We record the tim
steps necessary for the trajectory to reach the border with
chaotic region. We build up a sequence of positive numb
W ~or of the negative numbers2W, if we wish!, by assign-
ing to each time step the symbolW ~or 2W). The time spent
after the exit into the chaotic region is very short, and can
neglected. After injection back into the laminar region w
generate a sequence of2W ~of positive numbersW if earlier
we made the choice of2W). The next time we shall come
back to a sequence ofW (2W), and so on. We can imagin
the resulting sequence ofW’s and 2W’s as the velocity
fluctuations of a particle moving on a real axisy. This is a
discrete realization of the diffusion process described by
equation of motion

ẏ5h~ t !, ~20!

where the fluctuating variableh(t) has only two possible
values, eitherW or 2W. It was noted@11# that if we look at
a trajectory moving iny space as a form of random walke
this random walker has a probabilityP(uyu) of making a
jump of lengthuyu which is given by

P~ uyu!5c~ uyu/W!/W, ~21!

g

FIG. 2. The Lyapunov coefficentl of Eq. ~5! as a function ofz.
The dotted line denotes the numerical value of the integral of
~18!. The full line, coinciding in this scale with the dotted line
denotes the approximated expression of Eq.~19!. The dot denotes
the results of the numerical simulation of Ref.@10#.
0-3
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IGNACCOLO, GRIGOLINI, AND ROSA PHYSICAL REVIEW E64 026210
wherec(t) ~with t.0) is the distribution of times of sojourn
in the laminar region. For the Manneville map the functi
c(t) turns out@11# to be

c~ t !5dz21@11dz21~z21!t#z/(12z). ~22!

This means that the region 1.5,z,2 corresponds to a
case where the first moment of the waiting time distribut
is finite, whereas the second moment diverges. Note tha
the system to make a jump of intensityuyu it takes a timet
5uyu/W. This is a form of Le´vy walk that was proven to
become equivalent to a Le´vy flight @13#. According to the
perspective established by Ref.@11#, Eq. ~21! explains why
the advocates of nonextensive thermodynamics@14–16#
claim that Lévy statistics imply nonextensive thermodynam
ics. In fact, the transition probabilityP(uyu) can be derived
from a procedure of entropy maximization@11#. This transi-
tion probability is related to the waiting function distributio
of Eq. ~22! by the relation of Eq.~21!. Thus, the waiting
function of Eq.~22! also can be derived from a procedure
entropy maximization. The authors of Refs.@14–16# applied
this method, setting constraints on the norm and on the
ond moment. The ‘‘microcanonical’’ treatment of Ref.@11#
implies that we set a constraint on the first moment
c(t)(t.0). The process of entropy maximization by mea
of the entropy@Eq. ~2!#, with the generic entropic indexq,
for c(t) yields a form of the power law dependence@A
1Bt#1/(q21), where A and B are constants whose explic
expression was given in Ref.@11#. By comparing this expres
sion to Eq.~22!, we immediately obtain

q511~z21!/z. ~23!

This is not a significant result by itself. It is essentia
equivalent to an arbitrary labeling of the power index. T
ambitious aim of the authors of Refs.@1–3# was to extend
the connection between thermodynamics and dynamics f
the ordinary case of exponential sensitivity to that of pow
law sensitivity. For this purpose to be satisfactorily realiz
it is necessary to prove that the entropic indexq is ‘‘magic’’
in the sense earlier pointed out. An attractive possibility w
discovered in Ref.@11#. This had to do with the fact that th
Manneville map results in the following analytical expre
sion for the functionj(t):

j~ t !5@12~z21!xz21t#2z/(z21). ~24!

If we compare this analytical expression to Eq.~10!, at first
sight we are led to conclude that the magic value of
entropic indexq is given by

Q511~z21!/z, ~25!

in accordance with the entropic argument yielding Eq.~23!.
In fact, as pointed out in Sec. I, with this choice of th
entropic index the entropy of Eq.~8! increases linearly in
time, a property implying a steady rate of entropy increa
similar to the standard KS condition. This would be a stro
support of the conjecture made by the authors of Refs.@1–3#,
and would confirm that Le´vy statistics imply indeed a non
extensive form of thermodynamics.
02621
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Unfortunately the authors of Ref.@11# could not reach this
interesting conclusion, because a careful comparison of E
~24! and~10! shows that the assumption of independence
initial condition is wrong, and that

lQ5zxz21, ~26!

thereby implying a dependence onx that makes questionabl
the connection between dynamics and thermodynamics.
shall see that this questionable connection is caused by
conviction that the direct origin of thermodynamic behav
is the sensitivity to initial condition. The form that the func
tion j(t) of Eq. ~9! gains during motion within the lamina
region does not have a direct effect on thermodynamics.
peculiar nature of the resulting thermodynamics is de
mined rather by the sporadic action of the chaotic regi
This results in a sort of reduction of the rate of entro
increase of each trajectory, which becomes stronger
stronger, withz approaching the critical valuez52. At this
critical value a transition to another regime takes place. T
regime is not stationary, in the sense that the distribut
density keeps moving towards a sort of Diracd located at
x50 with an infinite time scale, and any connection wi
Lévy statistics is lost.

III. NUMERICAL RESULTS

The remarks of Secs. I and II do not leave any room
the adoption of a nonextensive perspective as a form of e
librium thermodynamics. In fact, if we adopt the equilibriu
perspective, as illustrated by Fig. 2 and Eq.~19!, we are
forced to accept the ordinary perspective associated with
existencce of a finite Lyapunov coefficent forz,2. This
range includes, as we have seen in Sec. II, the interval
,z,2, corresponding to the birth of Le´vy processes. How-
ever, we cannot rule out the possibility that the nonextens
formalism might turn out to be beneficial for another pu
pose, having to do with a form of out of equilibrium therm
dynamics. According to Gaspard and Wang@10#, the expo-
nential sensitivity to the initial condition is recovered wi
extremely large values of the window sizeN. Is it possible to
interpretN as a form of ‘‘time’’? Is it possible to assign
thermodynamic meaning to large portions of this extend
region of transition to thermodynamics? The ‘‘time’’ mea
ing is enforced upon us by the fact that we are considerin
dynamic condition corresponding to Le´vy processes. In Sec
II we have seen that the Manneville map is a dynamic mo
generating Le´vy processes. Thus we depart from the app
ently safer perspective based on assigning toN the meaning
of a volume, and we look atN as a form of time denoted by
t. Furthermore, we have to point out that the conditionz
.2 implies a breakdown of the ordinary invariant distrib
tion, or, as we shall see in Sec. IV, a relaxation to the inva
ant distribution with an infinite time scale. This is anoth
reason to adopt an out of equilibrium perspective. Is the n
extensive formalism sensitive to this kind of phase tran
tion?

For all these reasons, not only we look at the parameteN,
for N@1, as a continuous timet, but we explicitly set out of
0-4
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SPORADIC RANDOMNESS: THE TRANSITION FROM . . . PHYSICAL REVIEW E64 026210
equilibrium conditions. Note that in the case where an inva
ant distribution exists, we can either make an average o
the invariant distribution, as done with Eq.~7!, or an average
on time, as prescribed by Eqs.~5! and~6!. We want to adopt
a perspective that is valid in both cases, the case where
invariant distribution exists (z<2) and the case where
does not (z.2). This second condition will be discussed
detail in Sec. IV. To do this, we evaluate the nonextens
counterpart of the time dependent Lyapunov coefficent
Eq. ~6!, namely, the time dependent Lyapunov coefficent
fined by Eq.~14!, and we average it on an initial distribution
realized by the uniform distribution fromx50 to x5D,d.
This distribution is an out of equilibrium property, regardle
of whether the invariant distribution exists or not. In oth
words, we apply our numerical treatment to an evaluation

Aq~N![^Lq~N,x!&ne , ~27!

where^•••&ne means the average on the out of equilbriu
initial condition. All the numerical calculations of this se
tion refer toD51024. We select the valuez51.7 which is
located in the region corresponding to the emergence
Lévy processes. We plan to study whether or not, in t
explicitly out of equilibrium condition, a proper entropic in
dex can be found that realizes a steady condition of entr
increase. This means a condition where the time deriva
of Aq(N) of Eq. ~27! is constant. This means that we stud

Bq~N!5Aq~N11!2Aq~N!. ~28!

The purpose of the numerical calculation is that of determ
ing the time regions whereBq(N) is constant. In Sec. II we
have seen that in the casez<2, the KS entropy exists and i
finite. This means that a proper ‘‘thermodynamic’’ conditio
exists, this being the region of ordinary statistical mechan
with Q51. However, we want to assess if there is room
nonextensive thermodynamics to apply as a form of none
librium and transient thermodynamics. Futhermore, we w
to assess the time duration of this form of non-extens
regime, corresponding to a givenQÞ1, if it exists.

In Fig. 3 we plot the quantityB1(N). Note thatB1(N) is
the difference between two subsequent iteration steps o

FIG. 3. B1(N) as a function of the iteration stepN. B1(N) has a
vanishing value untilN.900, after which it undergoes an abru
increase followed by a slow regression, with statistical fluctuatio
to the constant value predicted by the Pesin theorem.
02621
i-
er

he

e
f
-

r
f

of
s

y
e

-

s
r
i-
t

e

he

Lyapunov coefficientL(N,x) of Eq. ~6! averaged over a
nonequilibrium distribution. We see that a relatively e
tended time region shows up, ranging fromN50 to N
.900, whereB1(N) is approximately constant with an a
most vanishing value. This is the region where according
the theory of Ref.@11#, the nonextensive thermodynamics
expected to afford conceptual benefits, establishing a c
nection between the power law sensitivity to initial conditio
and the existence of a ‘‘magic’’ entropic indexQ.1. In fact,
the results of numerical calculations, for brevity not report
here, show, in accordance with Fig. 8 of Sec. IV, th
BQ(N), with the ‘‘magic’’ Q of Eq. ~25!, is time indepen-
dent. However, it is possible to show that this region is n
characterized by any form of randomness, and conseque
it is difficult to depict it as a thermodynamic region, even
reference is made to its hypothetical nonextensive nature

To prove this important aspect, let us adopt the contino
time approximation to Eq.~15! and thus Eq.~17!. As done,
earlier let us denote byt the discrete valueN when N@1
applies, thereby implying that it can be considered as be
continuous time. The solution of Eq.~17! for a trajectory
with initial condition x(0) is given by

x~ t !5@x~0!12z2~z21!t#1/(12z). ~29!

Using this solution it is easy to find the time at which th
first trajectory, that belonging to the right border of the initi
distribution, exits from the laminar region. This time, d
noted byT, is given by

T5
d12z

z21 F S D

d D 12z

21G . ~30!

Before this time no trajectory can exit from the laminar r
gion and consequently no form of randomness can enter
play. Despite of the fact that the time interval@0,T# is that
corresponding toBQ(N), with Q given by Eq.~25!, obtaining
a constant nonvanishing value, it is hard to assign to
time regime a thermodynamic meaning, even if this is
Tsallis nonextensive thermodynamics.

It is interesting to evaluate analytically the time decrea
of populationM (t) of the laminar region, namely, the tim
decrease of the number of trajectories that at timet are still
found in the laminar region. We observe that fort.T the
initial condition x(0) of the trajectory exiting at that time i
given by

x~0!5@d12z2~z21!t#1/(12z). ~31!

This is easily proved by settingx(t) of Eq. ~29! equal tod.
The population changedM in the infinitesimal timedt is
given by

dM5M ~0!
dx~0!

D
, ~32!

whereM (0) is the number of trajectories within the lamin
region at the initial time. Thus, using Eq.~32!, we obtain

s,
0-5
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IGNACCOLO, GRIGOLINI, AND ROSA PHYSICAL REVIEW E64 026210
dM

dt
52

dz

D

M ~0!

@11dz21~z21!t#z/(z21)
, ~33!

which makes it possible for us to establish the time evolut
of the population at timet for t.T. In conclusion, we obtain

M ~ t !5M ~0! ~ t,T! ~34!

and

M ~ t !5M ~0!
d

D

1

@11dz21~z21!t#1/z21
~ t.T!. ~35!

It is interesting to remark that the time derivative ofM (t),
at t.T, as resulting from Eq.~35!, turns out to be propor-
tional to the waiting time distributionc(t) of Eq. ~22!. This
means thatM (t), although depending on an arbitrary initi
condition at times larger thanT, reflects the stationary an
statistical nature ofc(t). This fits the numerical observatio
made herein with the help of Fig. 6, that the process of
gression to equilibrium is not affected by the return of t
trajectories from the chaotic to the laminar region. We sh
see, in fact, that the long-time behavior ofM (t) of Eq. ~35!
is a fair indicator of the process of regression to equilibriu
The numerical calculation agrees very well with the theor
ical prediction of Eqs.~34! and ~35!. After a waiting time
T'900, the first exit occurs,M (t) undergoes an abrupt de
cay followed by a slower regression to the final equilibriu
condition. This is the process of memory erasure yieldi
after a finite time scale, to Le´vy diffusion. The time evolu-
tion of M (t) is very similar to that of the time derivative o
the Lyapunov coefficent of Eq.~13! with q5Q51.41. For
brevity, we omit showing this time evolution, that virtual
coincides with the analytical results of Sec. IV~illustrated by
Fig. 8!.

In Figs. 4 and 5 we show the change of the entropic ind
from the prediction of Eq.~23!, Q511(z21)/z , corre-
sponding to a trajectory motion not yet affected by the s
radic randomness, to the asymptotic valueQ51, produced

FIG. 4. Q as a function of time: The fast drop occurs att5T.
We see that att5T, when the first trajectory escapes from th
laminar region,Q(t) drops from the value 1.41, established by E
~25!, to the value 1.01, in about 200 iteration steps. This fast dro
followed by a much slower relaxation to the final value of 1, d
tailed in Fig. 5.
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by the repeated action of the chaotic region of the ph
space. The calculation is done by searching, at any timt
.0, for the value ofq, realizing, temporarily, the condition
of linear increase of the nonextensive entropy. This, in tu
is realized by looking for the value ofq makingBq(t) of Eq.
~28! constant over windows of finite size. The window siz
are reported in both figures as small intervals, whose len
tends to increase as the value ofQ decreases. Figure 4 show
the remarkable fact that the transition from the region wh
only order exists to that where sporadic randomness be
to show up is signaled by a fast drop of the entropic indexQ.
Nevertheless, after the fast drop att5T, the equilibrium
value Q51 is reached asymptotically in time with a slo
regression process. This is illustrated by Fig. 5, which sho
more clearly than Fig. 4, that the time duration of this te
porary nonextensive thermodynamics becomes larger
larger asQ comes closer and closer to the equilibrium val
Q51.

The process of regression ofQ(t) to the equilibrium value
Q51 is closely related to the process of transition from t
initial unstable distribution to the final invariant measur
This latter process, in turn, is determined by the trajecto
exiting the laminar region, and consequently is related to
time evolution M (t) of Eqs. ~34! and ~35!. However, an
essential part of this process of relaxation to equilibriu
might also be played by the trajectories that from the cha
region are injected back into the laminar region. To estab
whether this is true or not, it is convenient to monitor n
merically the process of transition to equilibrium. This
done as follows. The interval@0,1# is divided intoC cells of
equal size. In our calculations we setC5100. We consider
M trajectories with initial conditions uniformly distribute
over the whole interval@0,1#, and we iterate all of themN
times. We setM510 000 andN5100 000. In accordance
with the prescription of Sec. III, we denote the time with t
symbolt. At this stage we evaluate how many trajectories
found in a given cell with the labeli. We call this number

.
is
-

FIG. 5. Q as a function of time: Details of the slow regressio
following the fast drop. This figure shows, more clearly than Fig.
the windows of the entropy linear increase. The size of these w
dows becomes larger and larger at greater and greater times.
largest window shown here corresponds toQ51.00001. In the
scale of this figure, smaller values ofq become indistinguishable
from the valueq51, which corresponds to a window of infinit
time size.
0-6
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Mi , and we setPi
eq5Mi /M . This stage does not yet afford

proper numerical determination of the equilibrium distrib
tion. This is so because with a finite number of trajectoriesM
and cells of a finite size 1/C, the quantityPi

eq will turn out to
be a fluctuating function of the iteration timet[N. The in-
tensity of these fluctuations depends on the selected va
for the numbersC andM. To bypass this limitation we mak
a time average ont further iterations after the timet, thereby
defining

^Pi
eq&t[

1

t (
t850

t

Pi~ t8!, ~36!

where Pi(t8) denotes the probability that a trajectory
found in the i th cell at thet8th iteration after timet. The
result of this calculation is scarcely dependent on the va
of t, adopted if this is much greater than the time scale of
fluctuations ofPi

eq : In our case fort.500 the right hand
side of Eq.~36! remains practically constant for all the cell
Thus, we can omit the dependence of^Pi

eq&t on t and use
Eq. ~36!, with a given value oft.500, to define our numeri
cal equilibrium distribution, which, for the sake of simplicit
is again denoted by the symbolPi

eq .
We are now in a position to properly address the imp

tant issue of regression to equilibrium. First of all, we ado
the same initial condition as that used in the earlier calcu
tions. From this initial distribution we select a sample ofM
trajectories. At any time step we count how many trajector
are found in a given cell, thereby determiningPi(t), that is,
in this case, the probability that a trajectory is found in t
cell with label i at time t. We compare this probability with
the equilibrium probability, evaluated according to the e
lier numerical prescription, thereby defining the variab
Yi(t) as

Yi~ t ![uPi~ t !2Pi
equ. ~37!

Then we evaluate the relative dispersionRi(t) of the quan-
tities Yi(t) around the equilibrium valuePi

eq :

Ri~ t !5
Yi~ t !

Pi
eq

. ~38!

We now have to deal with the issue of fluctuations ofRi(t)
caused by the adoption of finite values forC and M. We
follow the same procedure as that adopted to determine
equilibrium distribution. This means that we make the tim
average

^Yi~ t !&t5
1

t (
t85t

t1t

Yi~ t8!, ~39!

thereby deriving the time average of the relative dispers
Ri(t):

^Ri~ t !&t5
^Yi~ t !&t

Pi
eq

. ~40!
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We then consider a set of numbersRof the interval@0,1#. For
each of these numbers we determine the number of iterat
Titer necessary to make the time average of the relative
persion@Eq. ~40!#, smaller thanR, for all the C cells. This
makes it possible for us to use the functionR(Titer) as a fair
indicator of the relaxation to equilibrium. In fact, for an
time Titer we can say that the corresponding distribution d
parts from equilibrium by an amount of the order ofR
3100%. The values oft adopted range fromt5500 to
3000. Within this wide interval the change ofR(Titer) is not
significant.

In Fig. 6 we plotR(Titer) for different values oft. This
figure shows that atTiter510 000 andTiter512 000 the dis-
tribution stills departs from equilibrium, for all the values o
t, by a quantity of the order of 3–4%. A smaller departu
from equilibrium is recorded at times larger than 20 000, a
therefore is not reported in Fig. 6. Consequently, accord
to the criterion we have adopted, atTiter516 000 the depar-
ture from equilibrium is expected to be still of the order
3–4%.

These numerical results prove thatM (t) is a good indica-
tor of the process of relaxation to equilibrium. The trajec
ries injected back into the laminar region do not have a
significant effect on determining the time scale of regress
to equilibrium. ThusQ(t) does not provide more informa
tion on the relaxation to equilibrium thanM (t). For ex-
ample, the extended linearity window betweent'6000 and
16 000 with Q51.00001, according to the prediction o
M (t) of Eq. ~35!, corresponds to a departure from equili
rium of the order of 3–4%. This is the same figure as t
provided by Fig. 6. This has the effect of reducing the s
nificance ofQ(t) as indicator of the regression to equilib
rium. The functionM (t) has an analytical expression th
affords indications as accurate asQ(t). Furthermore, this
casts doubts on the thermodynamic significance of the T
lis entropic indicator in this context. In Sec. II, we have se
that the Tsallis nonextensive thermodynamics cannot be
garded as a form of equilibrium thermodynamics. The n
merical results of this section lead us to conclude that e
interpreting the nonextensive thermodynamics as a form
out of equilibrium thermodynamics is incorrect. In fact, th
numerical results of this section prove that the relaxation

FIG. 6. R as a function of the timeT, identified byTiter . The
number of cells and the trajectories used areC5100 and M
510 000, respectively.
0-7
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IGNACCOLO, GRIGOLINI, AND ROSA PHYSICAL REVIEW E64 026210
equilibrium does not depend on the trajectories injected b
in the laminar region. The process of regression to equi
rium is essentially dictated by the deterministic dynam
driving the time evolution ofM (t). In this condition, invok-
ing a recourse to thermodynamics, even of nonextensive
ture, is not plausible on physical ground, since some deg
of randomness seems to be essential to establish a the
dynamic perspective.

We have studied the time evolution ofQ(t) also in the
casez.2, and we have not detected any significant cha
compared to the behavior discussed here, in spite of the
that a sort of phase transition should occur when mov
from z,2 to z.2. Rather than reporting the details for the
further results, we shall try to shed light on the real source
entropy production with the analytical results of Sec. IV.

IV. ANALYTICAL RESULTS

This section is devoted to a discussion of analytical
sults based on a study of the continuous approximation to
Manneville map. The dynamic system under study will ma
it possible for us to establish the existence of a form
entropy which is expected to be very close to the KS
tropy. We shall see that this is not exactly equivalent to
entropy. For the purpose of clarity, we define

a~ t ![11~12z!t ~41!

and

b[
1

z21
, g[

z

z21
. ~42!

A. A solvable equation of motion mimicking intermittent
behavior

The time evolution of the distribution density reads

]

]t
r~x,t !52

]

]x
„xzr~x,t !…1C~ t !. ~43!

Note that the functionC(t) is determined in such a way as
fulfill the condition that the the norm is conserved. Th
yields

C~ t ![r~1,t !. ~44!

This equation can be thought of as a dynamical system o
own, consisting of the joint action of two processes,
former being deterministic and the latter random. The de
ministic process is the solution of Eq.~17!, which in turn
corresponds to the first term on the right hand side of
~43!. The latter process corresponds toC(t). This is the
amount of randomness per unit of time. In fact,C(t) is pro-
portional to the number of trajectories injected back, per u
of time, into an initial conditionx of the interval@0.1#. There
is no dependence ofC(t) of x. This means that the process
totally random, and that the probability of obtainingx is
uniform. Using the method of characteristics~for details on
the method we refer the interested reader to Ref.@17#, which
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adopted the same method to solve a problem quite simila
that here under study!, we obtain:

r~x,t !5E
0

t C~t!

@„a~ t2t!21…xz21#g
dt

1rS x

@~a~ t !21!xz21#b
,0D 3

1

@„a~ t !21…xz21#g
,

~45!

and, due to the definition of Eq.~44!,

C~ t !5E
0

t C~t!

„a~ t2t!…g
dt1rS 1

„a~ t !…b
,0D 1

„a~ t !…g
. ~46!

Let us adopt the initial conditions used for the numeric
calculation of Sec. III. The timeT of Eq. ~30! has to be
written under the form

T5b@~D!12z21#. ~47!

It is straigthforward to show thatC(t) vanishes fort,T, and
that att5T it makes a jump to the value

C~T!5Dz21. ~48!

The study of the more interesting conditiont.T can be done
using the Laplace transform of Eq.~46!, that yields

Ĉ~s!5
Â~s!

12 f̂ ~s!
, ~49!

whereĈ(s) and f̂ (s) denote the Laplace transforms ofC(t)
and f (t)[1/(11(z21)t)(z/(z21)), respectively. The symbo
Â(t) denotes the Laplace transform of

A~ t ![rS 1

„a~ t !…b
,0D 3

1

„a~ t !…g
. ~50!

Thus

f̂ ~s![E
0

1`exp~2st!

„a~ t !…g
dt ~51!

and

Â~s!5
1

DET

1`exp~2st!

„a~ t !…g
dt. ~52!

It is straightforward to prove that lim
s→0

Â(s)51. We shall

use this property in Sec. IV C.
0-8
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B. CasezË2

Expression~51! yields ~for small s)

f̂ ~s!'12
s

22z
. ~53!

It is evident that this approximation is broken for 2<z. For
this reason, in Sec. IV C we shall look for a different kind
expansion. Also using Eqs.~49! and ~52!, we arrive at

C~ t !5~22z!S 12
1

D

1

„a~ t !…b
D . ~54!

This is an interesting result. It means that

lim
t→1`

C~ t !5~22z!. ~55!

We have earlier seen thatC(t) monitors the occurrence o
randomness per unit of time, at timet . The functionC(t), as
we shall see, is a property closely related to the Kolmogo
complexity. In the casez,2, where we know that the KS
entropy exists and is finite, this quantity also exists and
finite. It vanishes atz52 precisely as the KS entropy doe
Using Eq.~45! it is possible to derive an analytical expre
sion for r(t) which yields the invariant distribution throug

r~x![ lim
t→1`

r~x,t !5
22z

xz21
. ~56!

All this makes it possible to evaluate analytically the fo
lowing time-dependent Lyapunov coefficient:

l~ t ![E
0

t

ln~11zxz21!r~x,t !dx. ~57!

Using Koopman’s theorem@20# it is straigthforward to prove
that this time dependent Lyapunov coefficient coincides w
the quantityB1(N) ~with N@1, and set equal tot), dis-
cussed in Sec. III and illustrated in Fig. 3. Here we use E
~57! and ~45! to provide a further evaluation ofB1(N). We
call this quantityl(t), and we illustrate it in Fig. 7.

FIG. 7. l(t) as a function oft. The numerical calculation of this
quantity is done using Eqs.~57! and ~45!.
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From Fig. 7 we see that the main properties of Fig. 3
maintained. The only significant difference is the asympto
limit, that here is evaluated using the invariant distribution
Eq. ~56! rather than the numerical invariant distribution.
can be numerically assessed that the invariant distributio
the Manneville map coincides with Eq.~56! for x<0.2. In
the regionx.0.2 the invariant distribution of the Mannevill
map obtains values larger than those provided by Eq.~56!.
The theory of this section allows us to establish a spec
analytical form of the process of relaxation to equilibrium
Let us use the expression of Eq.~57! with a simplified ex-
pression forr(x,t) of Eq. ~45!. The simplification rests on
assuming thatC(t)'22z. We then obtain

l~ t !'E
0

122z

xz21
@12„~a~ t !21…xz21!2b#3 ln~11zxz21!dx.

~58!

Differentiating Eq.~58! with respect to time, and evaluatin
the resulting integral with the method of integratuion
parts, we obtaindl(t)/dt't2z/(z21), which means

l~ t !'a1t2b. ~59!

Another interesting property that can be evaluated ana
cally is the Tsallis entropy of Eq.~2!. Let us express this
entropy in terms of the distribution entropyr(x,t). It be-
comes

Sq~ t !5

12E
0

t

r~x,t !qdx

q21
. ~60!

Using Eq.~45!, we make this nonextensive entropy read

Sq~ t !5
1

q21 F12E
0

(a(t))2b

C~h!„z~ t,h!…qdhG , ~61!

where

C~h![„12~z21!thz21
…

(q21)g, ~62!

and

z~ t,h![E
T

t C~n!

„12~z21!nhz21
…

g
dn1r~h,0!. ~63!

It is straightforward to show that, fort,T,

Sq~ t !5
1

q21 F12
1

DqE0

D

C~h!dhG . ~64!

This expression confirms that the prescription of Eq.~25! is
confined to a time scale smaller thanT. The result illustrated
by Fig. 8 is also of some interest. This is the time derivat
of the entropy of Eqs.~61! and ~63!, corresponding to the
magic value of Eq.~25! with z51.7. We see that, in accor
dance with the results of Sec. III, it is constant in the tim
interval @0,T#, then it drops to a vanishing value with th
0-9
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inverse power law of Eq.~59!. Note that the theoretical pre
diction is not the exact solution of Eq.~43!. However, the
accuracy of the resulting time evolution ofr(x,t) has been
compared to the numerical solution of Eq.~43! and it has
been found that the error is of the order of 5% and,
course, tends to vanish fort→`. In conclusion, the analyti-
cal results of this section confirm the numerical results
Sec. III. The nonextensive nature of the Le´vy processes ad
vocated by the authors of Refs.@14–16# seem to conflict with
the results of this paper. The process of regression of
Lyapunov coefficient to the constant value established by
Pesin theorem takes place on a finite time scale. Note
fact, that the relaxation function of Eq.~59! is integrable for
z,2.

At this stage only one problem is left. This has to do w
whether or not the nonextensive thermodynamic appro
might afford finite Lyapunov coefficients in the regionz
.2. As mentioned in Sec. III, the numerical analysis did n
reveal any significant transition moving fromz,2 to z.2.
It is now the proper time of exploring this issue with analy
cal arguments.

C. CasezÌ2

To bypass the limitation of the expansion of Eq.~53!, for
f̂ (s) of Eq. ~51! we adopt the following expression:

f̂ ~s!5~z21!2gebssbE
bs

1`exp~2h!

hg
dh. ~65!

After some algebra we makef̂ (s) read

f̂ ~s!512~z21!2bebssb@S~s!1G„~z22!b…#, ~66!

where the functionS is defined by the following expansion

S~s![~z21!2(z22)bF2
1

b~z22!
s(z22)b1

1

2z23
s(2z23)b

1•••G . ~67!

FIG. 8. Entropy increase per unit of time. This curve is obtain
from the time derivative ofSq(t) of Eq. ~60!. z51.7.
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Using Eqs.~49!, ~66!, and ~67!, and the property noted in
Sec. IV that lim

s→0
Â(s)51, we obtain the important resul

C~ t !'
sin~bp!

p
~z21!bt2(z22)b. ~68!

D. External entropy vs KS entropy

On the basis of the physical interpretation of the functi
C(t) as the rate of the sporadic randomness per unit of ti
we are led to define the complexity of the Manneville map

K~ t ![E
T

t

C~ t8!dt8. ~69!

The results found in Secs. IV B and IV C lead us to conclu
that in the asymptotic time limitK(t) increases linearly with
t for z,2 and ast1/(z21) for z.2. It is remarkable that this
coincides with the asymptotic behavior found by Gasp
and Wang@10# by means of their compression algorithm
This coincides also with the results of a more general co
pression algorithm developed by Argentiet al. @18#. All this
is encouraging. However, the relation betweenK(t) and the
KS entropy is not quite clear. It is convenient to stress t
this result can also be interpreted in the following way. L
us imagine that at regular intervals of time we draw a ra
dom number of the interval@0,1#. Let us callH the uncer-
tainty associated with a single drawing, and let us define i
internal entropyper unit of time. We can conclude therefo
that the internal entropySI(N) is given by

SI~N!5NH. ~70!

However, the observation of the random process refers to
externaltime defined by

t~N!5t11•••tN . ~71!

We defineexternal~E! entropy the internal entropy of Eq
~70! expressed in terms of the external rather than of
internal time. From the results of Sec. IV B we obtain th
for z,2, theE entropySE reads

SE~ t !5~22z!Ht. ~72!

Is there a connection between theE entropy and the KS
entropy? We note that the KS entropy has a totally dyna
cal definition, whereas the E entropy rests on the uncerta
H which is not clearly defined. However, if we consider t
drawing of a number of the interval@0,1# equivalent to the
KS entropy of the Bernouilli map, and we setH5 ln 2, and
we compare the resulting expression forSE(t), divided byt,
to hKS of Eq. ~19!, we obtain that

RE /hKS5~m21!/m, ~73!

whereRE is the rate of internal entropy per unit of time an
m5(z21)/z.

d
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V. CONCLUDING REMARKS

The main result of this paper is that the extension of
connection between dynamics and thermodynamics prop
by the advocates of nonextensive thermodynamics@1–3#
does not work in the case of intermittent processes. T
approach does not afford any benefit in the regionz.2, and
does not even signal the transition from the stationaryz
,2) to the nonstationary (z.2) regime. At the same time
there is no room left for the interpretation of Le´vy processes
as a form of nonextensive statistical mechanics, since
numerical results of Sec. III prove that the time regim
where the Le´vy processes show up is characterized byQ
51, which is a colorful way of saying that ordinary statis
cal mechanics apply. The analytical theory of Sec. IV pro
ns

s,

s

-

t.
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that the main source of randomness is the crossing of
chaotic region. This explains why no significant benefit
derived from the adoption of a generalized form
Lyapunov coefficient.

These are negative results. The paper also contains
sult positive. This is the analytical solution of the regress
to equilibrium of the Manneville map. We note that th
makes it possible for us to obtain, for the complexity pro
erties of the Manneville map, the same conclusions as th
of the earlier work of Gaspard and Wang@10#, with no use of
the mathematics of Kolmogorov and Gnedenko@19#. We
think that the definition of the complexity of the Mannevil
map through the time integral ofC(t) affords a perspective
whose exact connection with the KS entropy is worthy
further studies.
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