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Sporadic randomness: The transition from the stationary to the nonstationary condition
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We address the study of sporadic randomness by means of the Manneville map. We point out that the
Manneville map is the generator of fluctuations yielding theyl grocesses, and that these processes are
currently regarded by some authors as statistical manifestations of a nonextensive form of thermodynamics.
For this reason we study the sensitivity to initial conditions with the help of a nonextensive form of the
Lyapunov coefficient. The purpose of this research is twofold. The former is to assess whether a finite diffusion
coefficient might emerge from the nonextensive approach. This property, at first sight, seems to be plausible in
the nonstationary case, where conventional Kolmogorov-Sinai analysis predicts a vanishing Lyapunov coeffi-
cient. The latter purpose is to confirm or reject conjectures about the nonextensive nat(vy pfdaeesses.

We find that the adoption of a nonextensive approach does not serve any predictive purpose: It does not even
signal a transition from a stationary to a nonstationary regime. These conclusions are reached by means of both
numerical and analytical calculations that shed light on why theylmrocesses do not imply any need to
depart from the adoption of traditional complexity measures.
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I. INTRODUCTION Pesin theorem does not refer to the physical entropy, but to
the entropy of a single trajectory. The phase space is divided
In recent few years there has been an increasing interest into cells; each cell is assigned a label, and a single trajectory
the possibility of establishing a connection between thermorunning on this phase space results in a sequence of symbols
dynamics and dynamics through a generalization of the conthe cell labels We then consider a window of sid¢ move
cept of sensitivity to initial conditions from exponential to it along a symbolic sequence, and consider all possible com-
power law[1-3]. The main idea behind these papers is thatpinations ofN symbols corresponding to each window posi-
according to the earlier work of Tsalljg], the conventional tion. This makes it possible to evaluate the corresponding
Boltzmann-Gibbs-Shannon prescription probability, and, by means of the adoption of the conven-
tional entropy of Eq(1), the entropyS(N) corresponding to

__ I a window of sizeN. The Komogorov-SinaiKS) entropyhy s
S=-2 pinp D is defined[7.8] by
has to be replaced by hxs= lim S(N)/N. 3)
N— o
1- EI p{ The Pesin theorelf6] establishes an attractive connection
Se=———- 2) between the KS entropy and an important dynamic property
q-1 called the Lyapunov coefficient. To illustrate the meaning of

this theorem, let us consider, for simplicity, a one-

The meaning of Eq(1) is well known. The classical (aimensional map, defined in the intenydl 1] as

phase space is divided into a discrete number of cells, an
each cell is assigned a probabilip/. The quantityS ex- X s 1= D(X,). ()
pressed in terms of the,’s, according to Eq(1), is the ntl "

entropy of the dynamic system under study. The quaity The Lyapunov coefficient reads

of Eq. (2) is a nonextensive generalization of the conven-

tional entropy of Eq.(1). In fact, it is straigthforward to 1

prove thatS, of Eq. (2) becomes identical t& of Eq. (1) A(Xg)= lim N ANXo), 6)
when the parametay, referred to as thentropic index is N

assigned the valug=1. It is believed that thgpower law .

sensitivity to initial conditions at the edge of chaos providesW'th
a natural link between the entropic indgxand the nonex- N-1

ponential sensitivity to initial conditions. To illustrate the _ / _ /

heuristic arguments of Refs1—3], we can adopt the results A(N.Xo) nzo In|®’ (xp)l=In 1T @’ (xo). ©

of a more recent pap¢b]. In this paper we illustrate a gen-

eralization of the Pesin theorel] on the basis of the non- The Pesin theorem states that if the invariant distribution
extensive entropy of Eq2). As is well known[7,8], the  p(x) exists, the KS entropy reads
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1 nection between thermodynamics and dynamics more ex-
fo In|®’ (x)|p(x)dx tended than that based on an exponential sensitivity to initial
hgs=\= - ) 7) conditions.. _ '
f p(x)dx The main purpose of this paper is to assess whether or not
0 this proposed generalization of the conventional approaches

might afford some benefit in the case of intermittent pro-

It is evident that this theorem is a natural consequence df€SSes. First of all, we note that this attractive result is ob-
adopting the form of Eq(6) supplemented by the ergodic talned_ by interpreting the_ window size as “t_|me,” so as to
assumption. establish a connection with the function of tin§é) of Eq.

In the case where the condition of strong chaos does ndi0). that the authors of Reff1-3] considered to be the key
apply, the linear dependence $fN) on N, implied by Eq. ingredient to generalize the connection between dynamics
(3), can be lost. Thus it seems to be convenient to generaliza"d thermodynamics. To make our analysis of their conjec-
the KS approach by using the entropy of E2). rather than tures unambiguous, we adopt a safer point of view, accord-
that of Eq.(1). In this case we would replac&(N) with ing to whichN plays the same role as the volume of thermo-
S4(N). Let us focus our attention on the cade-1, namely, ~dynamic formalism. Thus we rest on amd hoc
on windows of extremely large size, and let us denote thigeneralization of Eq(6). The rationale for this choice is as
virtually continous time by the symbal In this case, accord- follows. The expected generalized form of sensitivity of Eq.

ing to the authors of Ref5], for S,(t) we obtain the follow- (10) suggests a definition of

ing expression: = exph(x)z[1+(1—q)x]1’(1*‘1), (11)
1— 5q71f dxp(x)9€(t,x) 1 which implies a definition of the logarithm:
Sy()= -1 ® g
Ing()=—1—4 (12)

The theory of Ref[5] rests on the division of the phase
space into cells, so as to make possible an experimental déhus the analog of Eq5) becomes:
termination of probability density; the symbéldenotes the

cell size. The functiorg(t,x(0)), in fact, is defined, by the Ag(N.Xo) = lim iAq(N,xo), (13
prescription NowN
Ex(ON= | AX(t) g with
g( ,X( ))_AX(I(;;.IHOAX(O), ( ) 1 No1 (1_q)
. | Aq<N,xo>Er[( I1 |<1>'<xn>|> -1, (19
whereAx(t) denotes the distance at timhéetween two tra- a[\n=0

jectories that at the initial time=0 are located at a distance _ = | ) o
Ax(0) from one another. The theoretical result of E8) This is the generalized form of the Lyapunov coefficient that

makes it easy for us to explain why the nonextensive geneill be studied in this paper. For computational convenience,
alization of the KS entropy can mal(t) increase linearly we shall also make an average over a distribution of initial
in time, even if the ordinary exponential sensitivity to initial conditions. , , o .
condition is lost and is replaced by a power law sensitivity. 1 h€ Purpose of this paper is twofold. The first is to see if
To show this important property, let us consider the simpli-tNe Lyapunov coefficient of Eq(14) can be finite in the

fying condition whereg(t,x), with a power law form, is not region where the ordinary KS entropy vanishes. The second
x dependent. In this case we have is to decide whether or not the \ae processes can really be

interpreted as manifestations of the Tsallis nonextensive
thermodynamics. With the help of the Manneville map illus-
trated in Sec. Il, we shall explain these two motivations more
clearly.

E)=[1+(1-Q)rgt]" 9. (10

Under the simplifying conditions adopted, the coefficegt

is independent ofk. As shown hereby, the coefficent,
plays the role of generalized KS entropy. To see this prop-
erty, let us replace(t) in Eq. (8). Let us assign, to the The case of sporadic randomness under study in this pa-
entropic indexg, the “magic” valueq=Q, corresponding to  per is the Manneville maf®]. This maps reads

the sensitivity to initial conditions of Eq10). In this condi-

tion Sy(t) of Eq. (8) becomes linearly dependent on time. In Xpr1=P(X,) =X, +XH(mod 1) (z=1). (15
accordance with Eq3), we must define the nonextensive

form of the KS entropy as the limit far—o of Sy(t)/t. The  For the sake of the reader’s convenience, we show this map
limiting value in this case is given by the coefficary. This  in Fig. 1. Itis characterized by a laminar region given by the
is the reason why the authors of Ref$—3] imaged a con- interval[0,d], with d defined by the equation.

IIl. MANNEVILLE MAP
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FIG. 2. The Lyapunov coefficent of Eq. (5) as a function of
The dotted line denotes the numerical value of the integral of Eq.
(18). The full line, coinciding in this scale with the dotted line,
Yenotes the approximated expression of @§). The dot denotes
the results of the numerical simulation of REEQ].

FIG. 1. The Manneville map. This is the form corresponding to
z=1.7. The vertical full line divides the laminar region, on the left,
from the chaotic region, on the right. The abscissa of the dividin
line, d, is determined by Eq(16) and, in the case of this figure,
turns out to bed~0.59.

dZ+d=1 (16) use of Eq.(5). This supports the adoption of the theory of
’ Sec. IV, which is based on approximations yielding BE).
This region is illustrated in Fig. 1 by the portion on the left . we ahre nhow n a p03|t||or_1 tohgxplam the first OI the two
of the full vertical line. In this region the time evolution of a Issues that we aim to se_tt N |n_t IS paper. We see from Fig. 2
. . ; . that the KS entropy vanishes in the region 2. The former
trajectory can be approximated by the continuous equatlOnissue corresponds to the following question: Is it also pos-
S, sible to obtain a finite Lyapunov coefficient far-2, if we
X=X (17 adopt the non-extensive perspective advocated by Tsallis?
The region on the right of the vertical full line is the  As far as the latter issue is concerned, for a proper illus-
chaotic portion of the map that, as we shall see in this papetration we must briefly review earlier wof1]. The Man-
is the main source of the entropy increase. When the trajegreville map can be regarded as a dynamic generatorof Le
tory enters the chaotic region, after a few steps it is randomlyrocesses. As explained in Refd1] and[12], to derive a
injected back into the laminar region. As we shall see in Segrocess of diffusion from the Manneville map we can pro-
IV, an analytical treatment is possible if we make the asceed as follows. Let us consider the time at which the trajec-
sumption that the chaotic region is confined at the paint tory is injected in the laminar region. We record the time
=1, so that the continuous approximation of E#j7) ex-  steps necessary for the trajectory to reach the border with the
tends to the whole interv@D, 1]. In this case the Pesin theo- chaotic region. We build up a sequence of positive numbers
rem leads us to W (or of the negative numbers W, if we wish), by assign-
ing to each time step the symbal (or —W). The time spent

1 1 ., after the exit into the chaotic region is very short, and can be
fo dXFm(lJFZXZ ) neglected. After injection back into the laminar region we
hks= ) (18) generate a sequence -6l (of positive number$V if earlier
1 1 we made the choice of W). The next time we shall come
fo dxxzfl back to a sequence ¥ (—W), and so on. We can imagine

the resulting sequence &/'s and —W’s as the velocity
fluctuations of a particle moving on a real ayisThis is a

At z=1 this expression yields In2, in accordance with the . o e S ;
fact that the Manneville map becomes identical to the Ber_d|screte realization of the diffusion process described by the

noulli map. At z=2 the invariant distribution becomes equation of motion

equivalent to a5 of Dirac located ak=0, thereby yielding

the vanishing value. It is therefore reasonable that a good y= (1), (20)
approximation to Eq(18) is given by

— o where the fluctuating variable(t) has only two possible
Nks=2(2=2)In2. (19 values, eithelV or —W. It was noted 11] that if we look at

This is confirmed by Fig. 2, where we see that the approxi—a trajectory moving iry space as a form of random walker,

mated analytical expression of E@.9) fits the results of a f[h's random walker _has_ a probabllnlil(|y|) of making a
numerical evaluation of Eq18) very well. We also see that jump of length|y| which is given by

both predictions are close to the KS entropy of the Mannev-

ille map evaluated by Gaspard and W4i@)|, based on the IL(|y|) = ¢(|y|/W)/W, (21)
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wherey(t) (with t>0) is the distribution of times of sojourn Unfortunately the authors of Rdfl1] could not reach this
in the laminar region. For the Manneville map the functioninteresting conclusion, because a careful comparison of Egs.
#(t) turns out[11] to be (24) and(10) shows that the assumption of independence on
initial condition is wrong, and that
p(t)=d? 1+ d* Yz—1)t]712, (22)
— -1

This means that the region X&<2 corresponds to a Ng=2X, (26)
case where the first moment of the waiting time distribution
is finite, whereas the second moment diverges. Note that f
the system to make a jump of intenslty| it takes a timet
=|y|/W. This is a form of Ley walk that was proven to
become equivalent to a’lg flight [13]. According to the
perspective established by Retl], Eq. (21) explains why
the advocates of nonextensive thermodynaniitd—16
claim that Levy statistics imply nonextensive thermodynam-

ereby implying a dependence rithat makes questionable
the connection between dynamics and thermodynamics. We
shall see that this questionable connection is caused by the
conviction that the direct origin of thermodynamic behavior
is the sensitivity to initial condition. The form that the func-
tion £(t) of Eq. (9) gains during motion within the laminar
region does not have a direct effect on thermodynamics. The

. " . ; peculiar nature of the resulting thermodynamics is deter-
ics. In fact, the transition probabilitfi(|y|) can be derived mined rather by the sporadic action of the chaotic region.

from a procedure of entropy maximizatiphl]. This transi- ; . )
tion probability is related to the waiting function distribution _Th|s results in a sort of reduction of the rate of entropy

: . ncrease of each trajectory, which becomes stronger and
of Eq. (22) by the relation of Eq(21). Thus, the waiting ! . . " .
function of Eq.(22) also can be derived from a procedure of Stf‘?”ge“ withz apprqgchmg the critical .valur::z. At this :
entropy maximization. The authors of Refé4—16 applied critical value a transition to another regime takes place. This

this method, setting constraints on the norm and on the seég‘gime Is not statiqnary, in the sense thqt the distribution
ond moment. The “microcanonical” treatment of REL1] density keeps moving towards a sort of Dirddocated at

implies that we set a constraint on the first moment o =0 with an infinite time scale, and any connection with

(1) (t>0). The process of entropy maximization by meansl‘evy statistics Is lost.

of the entropy[Eq. (2)], with the generic entropic indeg,

for ¢(t) yields a form of the power law dependenga . NUMERICAL RESULTS
+Bt]¥@" Y, where A and B are constants whose explicit
expression was given in Rgfl1]. By comparing this expres-
sion to Eq.(22), we immediately obtain

The remarks of Secs. | and Il do not leave any room for
the adoption of a nonextensive perspective as a form of equi-
librium thermodynamics. In fact, if we adopt the equilibrium

q=1+(z—1)/z. (23 perspective, as illustrated by Fig. 2 and E§9), we are
forced to accept the ordinary perspective associated with the

This is not a significant result by itself. It is essentially existencce of a finite Lyapunov coefficent fax2. This
equivalent to an arbitrary labeling of the power index. Therange includes, as we have seen in Sec. Il, the interval 1.5
ambitious aim of the authors of Refsl—3] was to extend <z<2, corresponding to the birth of kg processes. How-
the connection between thermodynamics and dynamics frorsver, we cannot rule out the possibility that the nonextensive
the ordinary case of exponential sensitivity to that of powerformalism might turn out to be beneficial for another pur-
law sensitivity. For this purpose to be satisfactorily realized,pose, having to do with a form of out of equilibrium thermo-
it is necessary to prove that the entropic indgis “magic” dynamics. According to Gaspard and Wdnid], the expo-
in the sense earlier pointed out. An attractive possibility wasential sensitivity to the initial condition is recovered with
discovered in Refl11]. This had to do with the fact that the extremely large values of the window sikels it possible to
Manneville map results in the following analytical expres-interpretN as a form of “time”? Is it possible to assign a
sion for the functioné(t): thermodynamic meaning to large portions of this extended

region of transition to thermodynamics? The “time” mean-
ing is enforced upon us by the fact that we are considering a
dynamic condition corresponding to e processes. In Sec.
él we have seen that the Manneville map is a dynamic model
generating Ley processes. Thus we depart from the appar-
ently safer perspective based on assigningyl ihe meaning

Q=1+(z—1)/z, (25)  of avolume, and we look & as a form of time denoted by

t. Furthermore, we have to point out that the condition

in accordance with the entropic argument yielding Ep). >2 implies a breakdown of the ordinary invariant distribu-
In fact, as pointed out in Sec. |, with this choice of thetion, or, as we shall see in Sec. IV, a relaxation to the invari-
entropic index the entropy of Ed8) increases linearly in ant distribution with an infinite time scale. This is another
time, a property implying a steady rate of entropy increaseeason to adopt an out of equilibrium perspective. Is the non-
similar to the standard KS condition. This would be a strongextensive formalism sensitive to this kind of phase transi-
support of the conjecture made by the authors of Réfs3],  tion?
and would confirm that Dey statistics imply indeed a non- For all these reasons, not only we look at the paraniéter
extensive form of thermodynamics. for N>1, as a continuous timie but we explicitly set out of

Et)=[1—(z—1)x* 4] ZED), (24)

If we compare this analytical expression to Efj0), at first
sight we are led to conclude that the magic value of th
entropic indexq is given by
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0.5 ———r————T T Lyapunov coefficientA (N,x) of Eq. (6) averaged over a
I . ] nonequilibrium distribution. We see that a relatively ex-
04 Sambe ™~ tended time region shows up, ranging frof=0 to N
I T =900, whereB;(N) is approximately constant with an al-
s 03r . most vanishing value. This is the region where according to
= [ T the theory of Ref[11], the nonextensive thermodynamics is
02 7 expected to afford conceptual benefits, establishing a con-
[ T nection between the power law sensitivity to initial condition
0.1 . and the existence of a “magic” entropic ind€c 1. In fact,
0 I L o] ';]he resur:ts of _numericzﬂ calculat_i(r)]nsF,_foré)re\f/iténot :\e/por;ed
ere, show, in accordance with Fig. 8 of Sec. IV, that
0 5000 10300 15000 20000 Bo(N), with the “magic” Q of Eq. (25), is time indepen-

dent. However, it is possible to show that this region is not
FIG. 3. B;(N) as a function of the iteration stéfh B;(N) has a  characterized by any form of randomness, and consequently
vanishing value untiN=900, after which it undergoes an abrupt it is difficult to depict it as a thermodynamic region, even if
increase followed by a slow regression, with statistical fluctuationsreference is made to its hypothetical nonextensive nature.
to the constant value predicted by the Pesin theorem. To prove this important aspect, let us adopt the continous-
time approximation to Eq(15) and thus Eq(17). As done,
equilibrium conditions. Note that in the case where an invariearlier let us denote by the discrete valud when N>1
ant distribution exists, we can either make an average Ovedpplies, thereby implying that it can be considered as being
the invariant distribution, as done with E), or an average continuous time. The solution of Eq4l7) for a trajectory
on time, as prescribed by Eq$) and(6). We want to adopt  with initial conditionx(0) is given by
a perspective that is valid in both cases, the case where the
invariant distribution exists 2<2) and the case where it X(t)=[x(0)1"2—(z—1)t]¥(1~2), (29)
does not £¢>2). This second condition will be discussed in
detail in Sec. IV. To do this, we evaluate the nonextensive sjng this solution it is easy to find the time at which the

counterpart of the time dependent Lyapunov coefficent ofjyst trajectory, that belonging to the right border of the initial
Eq. (6), namely, the time dependent Lyapunov coefficent dejistribution, exits from the laminar region. This time, de-
fined by Eq.(14), and we average it on an initial distribution, noted byT, is given by

realized by the uniform distribution from=0 to x=A<d.

This distribution is an out of equilibrium property, regardless di-z[[A\1-2
of whether the invariant distribution exists or not. In other =-7 (a) —1}. (30
words, we apply our numerical treatment to an evaluation of z

Aq(N)E<Aq(N,X)>ne, (27 Before this time no trajectory can exit from the laminar re-

gion and consequently no form of randomness can enter into
where(- - - ), means the average on the out of equilbriumplay. Despite of the fact that the time interJ#l,T] is that
initial condition. All the numerical calculations of this sec- corresponding t@q(N), with Q given by Eq.(25), obtaining
tion refer toA=10"*. We select the value=1.7 which is  a constant nonvanishing value, it is hard to assign to this
located in the region corresponding to the emergence aime regime a thermodynamic meaning, even if this is the
Lévy processes. We plan to study whether or not, in thisTsallis nonextensive thermodynamics.
explicitly out of equilibrium condition, a proper entropic in- It is interesting to evaluate analytically the time decrease
dex can be found that realizes a steady condition of entropgf populationM (t) of the laminar region, namely, the time
increase. This means a condition where the time derivativelecrease of the number of trajectories that at ttraee still
of A4(N) of Eq. (27) is constant. This means that we study found in the laminar region. We observe that for T the

initial conditionx(0) of the trajectory exiting at that time is

The purpose of the numerical calculation is that of determin-
ing the time regions wherB(N) is constant. In Sec. Il we
have seen that in the cage 2, the KS entropy exists and is
finite. This means that a proper “thermodynamic” condition
exists, this being the region of ordinary statistical mechanic
with Q=1. However, we want to assess if there is room for
nonextensive thermodynamics to apply as a form of nonequi-
librium and transient thermodynamics. Futhermore, we want dM=M(0)
to assess the time duration of this form of non-extensive
regime, corresponding to a givep# 1, if it exists.

In Fig. 3 we plot the quantity3,(N). Note thatB,;(N) is  whereM(0) is the number of trajectories within the laminar
the difference between two subsequent iteration steps of thegion at the initial time. Thus, using E(2), we obtain

x(0)=[d'"?—(z—1)t]¥-2, (31

This is easily proved by setting(t) of Eq. (29) equal tod.
él’he population changedM in the infinitesimal timedt is
given by

dx(0)
A

(32
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FIG. 4. Q as a function of time: The fast drop occurstatT. FIG. 5. Q as a function of time: Details of the slow regression

We see that at=T, when the first trajectory escapes from the following the fast drop. This figure shows, more clearly than Fig. 4,
laminar regionQ(t) drops from the value 1.41, established by Eq. the windows of the entropy linear increase. The size of these win-
(25), to the value 1.01, in about 200 iteration steps. This fast drop iglows becomes larger and larger at greater and greater times. The
followed by a much slower relaxation to the final value of 1, de-|argest window shown here corresponds Qe=1.00001. In the

tailed in Fig. 5. scale of this figure, smaller values qfbecome indistinguishable
from the valueq=1, which corresponds to a window of infinite
dM dz M(0) time size.
= (33

dt A z—1/5 z/(z—1)’
[1+d"H(z=1)1] by the repeated action of the chaotic region of the phase
which makes it possible for us to establish the time evolutiorsPace. The calculation is done by searching, at any time
of the population at timéfor t>T. In conclusion, we obtain >0, for the value ofg, realizing, temporarily, the condition
of linear increase of the nonextensive entropy. This, in turn,
M(t)=M(0) (t<T) (349 s realized by looking for the value @fmakingB,(t) of Eg.
(28) constant over windows of finite size. The window sizes
are reported in both figures as small intervals, whose length
tends to increase as the value@flecreases. Figure 4 shows
M (t) = M(O)E 1 (t>T). (35 the remarkable fact that the transition from the region where
Ar1+d7 Y z—1)t]Ye L only order exists to that where sporadic randomness begins
to show up is signaled by a fast drop of the entropic in@Qex

It is interesting to remark that the time derivativeM({t), Nevertheless, after the fast drop &t T, the equilibrium
att>T, as resulting from Eq(35), turns out to be propor- value Q=1 is reached asymptotically in time with a slow
tional to the waiting time distributiog/(t) of Eq. (22). This  regression process. This is illustrated by Fig. 5, which shows,
means thai (t), although depending on an arbitrary initial more clearly than Fig. 4, that the time duration of this tem-
condition at times larger tham, reflects the stationary and porary nonextensive thermodynamics becomes larger and
statistical nature ofs(t). This fits the numerical observation larger asQ comes closer and closer to the equilibrium value
made herein with the help of Fig. 6, that the process of reQ=1.
gression to equilibrium is not affected by the return of the The process of regression@{t) to the equilibrium value
trajectories from the chaotic to the laminar region. We shallQ=1 is closely related to the process of transition from the
see, in fact, that the long-time behaviorMf(t) of Eq. (35) initial unstable distribution to the final invariant measure.
is a fair indicator of the process of regression to equilibrium.This latter process, in turn, is determined by the trajectories
The numerical calculation agrees very well with the theoretexiting the laminar region, and consequently is related to the
ical prediction of Egs(34) and (35). After a waiting time  time evolutionM(t) of Egs. (34) and (35). However, an
T~900, the first exit occurd(t) undergoes an abrupt de- essential part of this process of relaxation to equilibrium
cay followed by a slower regression to the final equilibriummight also be played by the trajectories that from the chaotic
condition. This is the process of memory erasure yieldingregion are injected back into the laminar region. To establish
after a finite time scale, to vy diffusion. The time evolu- whether this is true or not, it is convenient to monitor nu-
tion of M (t) is very similar to that of the time derivative of merically the process of transition to equilibrium. This is
the Lyapunov coefficent of Eq13) with q=Q=1.41. For done as follows. The intervaD,1] is divided intoC cells of
brevity, we omit showing this time evolution, that virtually equal size. In our calculations we 8t 100. We consider
coincides with the analytical results of Sec. (Mustrated by M trajectories with initial conditions uniformly distributed
Fig. 8. over the whole interval0,1], and we iterate all of then\

In Figs. 4 and 5 we show the change of the entropic indextimes. We setM =10000 andN=100000. In accordance
from the prediction of Eq(23), Q=1+(z—1)/z , corre-  with the prescription of Sec. Ill, we denote the time with the
sponding to a trajectory motion not yet affected by the sposymbolt. At this stage we evaluate how many trajectories are
radic randomness, to the asymptotic valpe=1, produced found in a given cell with the labal We call this number

and
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M;, and we seP{%=M; /M. This stage does not yet afford a 0.6 -
proper numerical determination of the equilibrium distribu-
tion. This is so because with a finite number of trajectokies =500 0
and cells of a finite size @, the quantityP; will turn out to 0.4 T=1000 0 .
be a fluctuating function of the iteration timie=N. The in- T=1500 x
tensity of these fluctuations depends on the selected values T T=2000 +
for the number<C andM. To bypass this limitation we make 02 i
a time average on further iterations after the timie thereby |
defining
1 T 0 - X 1
e\ — ’ 0 5000 10000 15000 200(
(PPh=2 2 Pit), (36) x

e - . . FIG. 6. R as a function of the timd, identified byT;;s,. The
where Pi(t’) denotes the probability that a trajectory is number of cells and the trajectories used &e 100 and M

found in th_elth cell at th_et th iteration after timet. The — _; 000, respectively.
result of this calculation is scarcely dependent on the value

of 7, adopted if this is much greater than the time scale of th‘?Ne then consider a set of numb@sf the interval0,1]. For

. eq. .

flgctuanons ofP;™ In our case forr>500 the right hand o5y of these numbers we determine the number of iterations

side of Eq.(36) remains practically const?nt for all the cells. T,.., Necessary to make the time average of the relative dis-

Thus, we can omit the dependence(8f™), on 7 and use  yersion[Eq. (40)], smaller tharR, for all the C cells. This

Eq.(36), with a given value of>500, to define our numeri- ayes it possible for us to use the functiR(T;,.,) as a fair

cal equilibrium distribution, which, for the sake of simplicity jygicator of the relaxation to equilibrium. In fact, for any

is again denoted by the symbBf. . time T;;e, We can say that the corresponding distribution de-
We are now in a position to properly address the imporparts from equilibrium by an amount of the order Bf

tant issue of regression to equilibrium. First of all, we adopty 1009%. The values of adopted range fromr=500 to

the same initial condition as that used in the earlier calculagggg. within this wide interval the change B{T;;c,) is not

tions. From this initial distribution we select a samplehf significant. ¢

trajectories_. At any time step we count hoyv_many traje(_:tories In Fig. 6 we plotR(T;,) for different values ofr. This

are f_ound in a given cell_,_thereby detgrmlmﬁgt), that IS, figure shows that &f e, = 10 000 andT,e,= 12 000 the dis-

in this case, the probability that a trajectory is found in theyihytion stills departs from equilibrium, for all the values of

cell W|th_ ]apell at tlmet.._We compare this prqbabmty with 7, by a quantity of the order of 3-4%. A smaller departure

the equilibrium probability, evaluated according to the earom equilibrium is recorded at times larger than 20 000, and

lier numerical prescription, thereby defining the variableigrefore is not reported in Fig. 6. Consequently, according

Yi(t) as to the criterion we have adopted, Bto,= 16 000 the depar-
ture from equilibrium is expected to be still of the order of
Yi(t)=|Py(t)— PEA. @) gy P

These numerical results prove thd(t) is a good indica-
tor of the process of relaxation to equilibrium. The trajecto-
ries injected back into the laminar region do not have any
significant effect on determining the time scale of regression
R(t)= Yi(t)_ (39) to equilibrium. ThusQ(t) does not provide more informa-
! pea tion on the relaxation to equilibrium thaM(t). For ex-
ample, the extended linearity window between6000 and
We now have to deal with the issue of fluctuationsRpft) 16 000 with Q=1.00001, according to the prediction on
caused by the adoption of finite values férand M. We  M(t) of Eq. (35), corresponds to a departure from equilib-
follow the same procedure as that adopted to determine théaum of the order of 3—4%. This is the same figure as that
equilibrium distribution. This means that we make the timeprovided by Fig. 6. This has the effect of reducing the sig-
average nificance ofQ(t) as indicator of the regression to equilib-
rium. The functionM(t) has an analytical expression that
1 affords indications as accurate qt). Furthermore, this
<Yi(t)>T:; ,2 Yi(t'), (39 casts doubts on the thermodynamic significance of the Tsal-
vt lis entropic indicator in this context. In Sec. I, we have seen
thereby deriving the time average of the relative dispersioﬁhat the Tsallis nonextens_|.ve.thermodynamlcs cannot be re-
garded as a form of equilibrium thermodynamics. The nu-

Ri(1): . . .
i(0) merical results of this section lead us to conclude that even

Then we evaluate the relative dispersigi{t) of the quan-
tities Y;(t) around the equilibrium valu®;9:

t+7

(YD) interpreting the nonextensive thermodynamics as a form of
(Ri(t)),= ' o z (40 out of equilibrium thermodynamics is incorrect. In fact, the
Pi numerical results of this section prove that the relaxation to
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equilibrium does not depend on the trajectories injected backdopted the same method to solve a problem quite similar to
in the laminar region. The process of regression to equilibthat here under stuglywe obtain:

rium is essentially dictated by the deterministic dynamics

driving the time evolution oM (t). In this condition, invok- ft C(7)

ing a recourse to thermodynamics, even of nonextensive na-p(x,t)=
ture, is not plausible on physical ground, since some degree
of randomness seems to be essential to establish a thermo-
dynamic perspective. +p< X 0) % 1

We have studied the time evolution @f(t) also in the [(a(t)—1)x2" 18’ [(a(t)—1)x2~ 1]
casez>2, and we have not detected any significant change

dr
of (a(t—7)—1)x*~ 17

compared to the behavior discussed here, in spite of the fact (49
that a sort of phase transition should occur when moving _—
from z<2 to z>2. Rather than reporting the details for these@Nd: due to the definition of E¢44),
further results, we shall try to shed light on the real source of
entropy production with the analytical results of Sec. IV. t C(7) ( 1 ) 1
C(t)= f dr+p ,0 . (46)
o(a(t—1))" ()P ] (a(t))”

IV. ANALYTICAL RESULTS

This section is devoted to a discussion of analytical relet us adopt the initial conditions used for the numerical

sults based on a study of the continuous approximation to thgalculation of Sec. lll. The tim& of Eq. (30) has to be
Manneville map. The dynamic system under study will makeWritten under the form
it possible for us to establish the existence of a form of

entropy which is expected to be very close to the KS en- T=p[(A)" 1] (47)
tropy. We shall see that this is not exactly equivalent to the
entropy. For the purpose of clarity, we define It is straigthforward to show th&t(t) vanishes fot<T, and
that att=T it makes a jump to the value
a(t)=1+(1-2)t (41

—Az—1

and C(T)=A%"" (48
1 z The study of the more interesting conditibn T can be done
B=—1+ Y=,-1 (42)  using the Laplace transform of EG6), that yields
A A . o . . A(s)

. A solvable equation of motion mimicking intermittent C(s)= ——, (49)

behavior 1-1f(s)

The time evolution of the distribution density reads R R
whereC(s) andf(s) denote the Laplace transforms G{t)

andf(t)=1/(1+ (z—1)t) @@ respectively. The symbol

1% d
—p(X,1)=— —=(X%p(X,t))+ C(t). 43 ~
atp( ) &X( P D)+C(Y) “3 A(t) denotes the Laplace transform of

Note that the functioi€(t) is determined in such a way as to
fulfill the condition that the the norm is conserved. This A(t)Ep(
yields

1
,0] X . 50
(a(1)? ) (a(t))” 50

C(t)=p(1}). (44 Thus

This equation can be thought of as a dynamical system on its

own, consisting of the joint action of two processes, the %(S)Efwexp(—st) (51)
former being deterministic and the latter random. The deter- o (a(t)”

ministic process is the solution of E¢L7), which in turn

corresponds to the first term on the right hand side of Eqand

(43). The latter process corresponds @&jt). This is the

amount of randomness per unit of time. In fa€(t) is pro-

portional to the number of trajectories injected back, per unit As)= if*”’exli—s'f) dt (52
of time, into an initial conditiorx of the interval 0.1]. There At (a(t)” '

is no dependence @ (t) of x. This means that the process is
totally random, and that the probability of obtaininxgis
uniform. Using the method of characteristidsr details on
the method we refer the interested reader to Réf], which  use this property in Sec. IV C.

It is straightforward to prove that IiglOA(s)= 1. We shall
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05 ———mr————T———T— From Fig. 7 we see that the main properties of Fig. 3 are
i 1 maintained. The only significant difference is the asymptotic
04 . limit, that here is evaluated using the invariant distribution of
I 1 Eqg. (56) rather than the numerical invariant distribution. It
- 03 / . can be numerically assessed that the invariant distribution of
3z o 1 the Manneville map coincides with E¢56) for x<0.2. In
02 : 7 the regionx>0.2 the invariant distribution of the Manneville
[ T map obtains values larger than those provided by (&6).
01 - 7 The theory of this section allows us to establish a specific
I . . . T analytical form of the process of relaxation to equilibrium.
0 0 5000 10000 15000 20000 Let us use the expression of E&7) with a simplified ex-

pression forp(x,t) of Eq. (45). The simplification rests on

t assuming tha€(t)~2—z. We then obtain

FIG. 7. A (t) as a function of. The numerical calculation of this
antity is done using E and (45). 12—z

quantiyt using Eqe57) and(49) )\(t)%f =11 (e DX ) AIxIn(1+ 2% Hdx.

B. Casez<? X (58)

Expression51) yields (for small s
P nSDy ( ) Differentiating Eq.(58) with respect to time, and evaluating

- S the resulting integral with the method of integratuion by
f(s)~1-5—. (53 parts, we obtaird\ (t)/dt~t~Z# 1), which means
AMt)~a+t P, (59

It is evident that this approximation is broken fos2. For
this reason, in Sec. IV C we shall look for a different kind of

) . . Another interesting property that can be evaluated analyti-
expansion. Also using Eq#49) and(52), we arrive at g property y

cally is the Tsallis entropy of Eq2). Let us express this
entropy in terms of the distribution entropgy(x,t). It be-

1
C(t):(z—z)( 1-—
A (a(t)® t
— q
This is an interesting result. It means that () ! Jop(x,t) dx
Sy(H)=
lim C(t)=(2-2). (55) q

ot Using Eq.(45), we make this nonextensive entropy read

— (60)

We have earlier seen th&t(t) monitors the occurrence of 1 (a(t))~P

randomness per unit of time, at timeThe functionC(t), as Sy(t)= —[1—f W(n)(Z(t,7)%dn|, (61)
we shall see, is a property closely related to the Kolmogorov q-1 0

complexity. In the case<2, where we know that the KS
entropy exists and is finite, this quantity also exists and i
finite. It vanishes az=2 precisely as the KS entropy does. W(p)=(1—(z—1)ty* Ha-v7, (62)
Using Eq.(45) it is possible to derive an analytical expres-

sion for p(t) which yields the invariant distribution through and

éNhere

(0= lim p(x.t)=——2 (56) t )=Jt c)
g Hﬂjp oxEt ()= T(1—(z—D)wn* Yy

dv+p(7n,0). (63

All this makes it possible to evaluate analytically the fol- It is straightforward to show that, fa<T,
lowing time-dependent Lyapunov coefficient:

. (64)

Sy(t)y= ! 1 lJA\If d
q(t)_q__l ~xals (m)dn

t
)\(t)Efoln(1+zxz‘1)p(x,t)dx. (57
This expression confirms that the prescription of Ex) is

Using Koopman's theoref20] it is straigthforward to prove confined to a time scale smaller th&nThe result illustrated
that this time dependent Lyapunov coefficient coincides withby Fig. 8 is also of some interest. This is the time derivative
the quantityB;(N) (with N>1, and set equal tt), dis- of the entropy of Eqs(61) and (63), corresponding to the
cussed in Sec. Il and illustrated in Fig. 3. Here we use Eqsmagic value of Eq(25) with z=1.7. We see that, in accor-
(57) and(45) to provide a further evaluation @&,(N). We  dance with the results of Sec. Ill, it is constant in the time
call this quantityx (t), and we illustrate it in Fig. 7. interval [0,T], then it drops to a vanishing value with the
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0.08 ———r————71 17— Using Egs.(49), (66), and (67), and the property noted in
— 1 Sec. IV that IimSHOA(s)z 1, we obtain the important result
0.06 |- -
© ‘ sin(Bm)
~ * ~ — - ﬁ _(Z_Z)IB
o 004l i C(t) p- (z—1)Ft . (68
U)U .
'U -
0.02 | 1 . D. External entropy vs KS entropy
[ L T On the basis of the physical interpretation of the function
0l L L C(t) as the rate of the sporadic randomness per unit of time,
0 5000 10000 15000 ~ 20000 we are led to define the complexity of the Manneville map as
¢
t
FIG. 8. Entropy increase per unit of time. This curve is obtained K(t)= J C(t")dt’. (69
from the time derivative 06,(t) of Eqg. (60). z=1.7. T

inverse power law of Eq59). Note that the theoretical pre- | Ne results found in Secs. IVB and IV C lead us to conclude
diction is not the exact solution of E@43). However, the thatinthe asymptlc/>(£|£:1t)|me limi(t) increases linearly with
accuracy of the resulting time evolution pfx,t) has been tforz<2 and ad for z>2. It is remarkable that this
compared to the numerical solution of E@3) and it has coincides with the asymptotic bf—}hawor found by Ggspard
been found that the error is of the order of 5% and, of2"d Wang[10] by means of their compression algorithm.
course, tends to vanish for. In conclusion, the analyti- This coincides also with the results of a more general com-
cal results of this section confirm the numerical results of?'€SSIOn alg_onthm developed by A_rgeetlal.[18]. All this
Sec. lll. The nonextensive nature of théviyeprocesses ad- IS encouraging. HOW?Vef- the rel_atlon be‘V.V“’@(") and the
vocated by the authors of Refd4—16 seem to conflict with KS entropy is not qune_ clear. It is .convenlent t.o stress that
the results of this paper. The process of regression of thg"s. resglt can also be mterpreted n th? following way. Let
Lyapunov coefficient to the constant value established by thiS imagine that at regular intervals of time we draw a ran-
Pesin theorem takes place on a finite time scale. Note, ifom number of the intervdl0,1]. Let us callH the uncer-
fact, that the relaxation function of E9) is integrable for tainty associated with a sm_gle drawing, and let us define it as
<D internal entropyper unit of time. We can conclude therefore
At this stage only one problem is left. This has to do with that the internal entrop$,(N) is given by
whether or not the nonextensive thermodynamic approach B
might afford finite Lyapunov coefficients in the regian Si(N)=NH. (70)
>2. As mentioned in Sec. lll, the numerical analysis did not i
reveal any significant transition moving from< 2 to z>2. However, the ob_servatlon of the random process refers to the
It is now the proper time of exploring this issue with analyti- €xternaltime defined by

cal arguments.
t(N)=71+---7y. (72

C. Casez>2 We defineexternal(E) entropy the internal entropy of Eq.
To bypass the limitation of the expansion of E§3), for ~ (70) expressed in terms of the external rather than of the
2 i ion- internal time. From the results of Sec. IVB we obtain that,
f(s) of Eq. (51) we adopt the following expression: for z<2, theE entropySy reads
. +eexp(—
f(s)=(z—1)‘7eﬁssﬁf Mdn (65) Se(t)=(2—2)Ht. (72
Bs i
Is there a connection between tReentropy and the KS
After some algebra we makis) read entropy? We note that the KS entropy has a totally dynami-
cal definition, whereas the E entropy rests on the uncertainy
. - H which is not clearly defined. However, if we consider the
f(s)=1—(z—1)"Pef*s"[2(s)+T'((z—2)B)], (66)  drawing of a number of the interv&D,1] equivalent to the
KS entropy of the Bernouilli map, and we sdt=In2, and

where the functior®, is defined by the following expansion: We compare the resulting expression &(t), divided byt,
to hgs of Eq. (19), we obtain that

St eosy e Re/hys=(pu—1)/u, (73)

X(e)=(z-1) B(z—2) 22-3

whereRg is the rate of internal entropy per unit of time and
67 w=(z—1)/z
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V. CONCLUDING REMARKS that the main source of randomness is the crossing of the

The main result of this paper is that the extension of theghﬁ?/telg r?r%lfnn' t‘gglsa%é%l?gnns Vovfh yanoges:‘ger;gllgaendt t}i?rim 0'?

connection between dynamics and thermodynamics proposgc apunov coefficient.

by the advocates of nonextensive thermodynanfiics3]  ~ These are negative results. The paper also contains a re-
does not work in the case of intermittent processes. Thigyt positive. This is the analytical solution of the regression
approach does not afford any benefit in the regior2, and  to equilibrium of the Manneville map. We note that this
does not even signal the transition from the stationay ( makes it possible for us to obtain, for the complexity prop-
<2) to the nonstationaryz(>2) regime. At the same time, erties of the Manneville map, the same conclusions as those
there is no room left for the interpretation of\yeprocesses of the earlier work of Gaspard and Wafif], with no use of

as a form of nonextensive statistical mechanics, since théhe mathematics of Kolmogorov and Gnederk®]. We
numerical results of Sec. Il prove that the time regimethink that the definition of the complexity of the Manneville
where the Ley processes show up is characterized @y map through the time integral &@(t) affords a perspective
=1, which is a colorful way of saying that ordinary statisti- whose exact connection with the KS entropy is worthy of
cal mechanics apply. The analytical theory of Sec. IV provedurther studies.
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